# Lecture 11: de Bruijn Graphs and Metagenomics

Bioinformatics Algorithms CSC4181/6802

Most slides used are from Ben Langmead's Teaching Materials (www.langmead-lab.org/teaching-materials)

genome: AAABBBBA







Walk crossing each edge exactly once gives a reconstruction of the genome



#### **AAABBBBA**

Walk crossing each edge exactly once gives a reconstruction of the genome. This is an *Eulerian walk*.

### Directed multigraph

Directed multigraph G(V, E) consists of set of *vertices, V* and multiset of *directed edges, E* 

Otherwise, like a directed graph

Node's *indegree* = # incoming edges

Node's *outdegree* = # outgoing edges

De Bruijn graph is a directed multigraph



$$V = \{a, b, c, d\}$$
  
 $E = \{(a, b), (a, b), (a, b), (a, c), (c, b)\}$   
Repeated ———

#### Eulerian walk definitions and statements

Node is *balanced* if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

Graph is connected if each node can be reached by some other node

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are *Eulerian*. (For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

A directed, connected graph is Eulerian if and only if it has at most 2 semi-balanced nodes and all other nodes are balanced

Jones and Pevzner section 8.8



Back to de Bruijn graph





Is it Eulerian? Yes

Argument 1:  $AA \rightarrow AA \rightarrow AB \rightarrow BB \rightarrow BB \rightarrow BA$ 

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Full illustrative de Bruijn graph and Eulerian walk implementation:

http://bit.ly/CG\_DeBruijn

Example where Eulerian walk gives correct answer for small *k* whereas Greedy-SCS could spuriously collapse repeat:

```
>>> G = DeBruijnGraph(["a_long_long_long_time"], 5)
>>> print G.eulerianWalkOrCycle()
['a_lo', '_lon', 'long', 'ong_', 'ng_l', 'g_lo',
'_lon', 'long', 'ong_', 'ng_l', 'g_lo', '_lon',
'long', 'ong_', 'ng_t', 'g_ti', '_tim', 'time']
```



Assuming perfect sequencing, procedure yields graph with Eulerian walk that can be found efficiently.

We saw cases where Eulerian walk corresponds to the original superstring. Is this always the case?



Problem 1: Repeats still cause misassembles

$$ZA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BY$$

$$ZA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BY$$

#### Problem 2:

We've been building DBGs assuming "perfect" sequencing: each k-mer reported exactly once, no mistakes. Real datasets aren't like that.



# Third law of assembly

Repeats make assembly difficult; whether we can assemble without mistakes depends on length of reads and repetitive patterns in genome



Shuffling:



Gaps in coverage (missing *k*-mers) lead to *disconnected* or non-Eulerian graph

Graph for a long long long time, k = 5:



Gaps in coverage (missing *k*-mers) lead to *disconnected* or non-Eulerian graph

Graph for a long long long time, k = 5 but omitting ong t:



Coverage differences make graph non-Eulerian

Graph for a\_long\_long\_long\_time, k = 5, with extra copy of ong\_t:

4 semi-balanced nodes



Errors and differences between chromosomes also lead to non-Eulerian graphs

Graph for a\_long\_long\_long\_time, k = 5 but with error that turns one copy of long\_ into lxng\_



Casting assembly as Eulerian walk is appealing, but not practical

Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of prokaryotic genomes using short reads." *BMC bioinformatics* 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn graph, where walk contains each read as a subwalk

#### Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly." *Algorithms in Bioinformatics*. Springer Berlin Heidelberg, 2007. 289-301.

#### Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly





When data is error-free, # nodes, edges in De Bruijn graph is  $O(\min(G, N))$ 



What about data with sequencing errors?

Correcting errors up-front prevents De Bruijn graph from growing far beyond O(G) plateau

How to correct?

Analogy: how to spell check a language you've never seen before?

Errors tend to turn frequent words (*k*-mers) to infrequent ones. Corrections should do the reverse.



Left: Take example, mutate a *k*-mer character randomly with probability 1%

Right: 6 errors yield 10 new nodes, 6 new weighted edges, all with weight 1



*k*-mers with errors usually occur fewer times than error-free *k*-mers



#### Assembly alternatives







# Assembly alternatives



 Salmonella genome assembly of 100bp
 Illumina reads

51-mer = 4618 nodes and 6070 edges



 Salmonella genome assembly of 100bp
 Illumina reads

61-mer = 1357 nodes and
 1768 edges



https://github.com/rrwick/Bandage/wiki/Effect-of-k mer-size

Salmonella genome assembly of 100bp
 Illumina reads

71-mer = 611 nodes and
 765 edges



https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

Salmonella genome assembly of 100bp
 Illumina reads

81-mer = 490 nodes and
 512 edges



https://github.com/rrwick/Bandage/wiki/Effect-of-k mer-size

Salmonella genome assembly of 100bp
 Illumina reads

91-mer = 2386 nodes and 304 edges



Salmonella genome assembly of 100bp
 Illumina reads



Solution: Use a range of k-mer sizes and reconcile the results

- SPAdes Assembler

30<del>4 euges</del>



https://github.com/rrwick/Bandage/wiki/Effect-of-k mer-size

#### Assembly paradigms



### Scaffolding

Both OLC and DBG are concerned with constructing the longest, most accurate *contigs* possible

Contig is a stretch of unambiguously assembled sequence

Scaffolding orders and orients contigs with respect to each other

For this we can use data from various sources, especially paired ends

#### Scaffolding: paired-end sequencing

We discussed sequencing by synthesis

Process we discussed produces one contiguous read sequence



#### Scaffolding: paired-end sequencing

Alternative protocol produces a *pair* of reads taken from either end of a longer *fragment* 

Paired reads are also called *mates* to distinguish them from the *unpaired* reads we've been discussing

Fragment

# GCATCATTGCCAATATATGGCTCTAGCATAAAACC GCATCATTG GCATCATTG

Mate 1 Mate 2

Depending on lengths, mates might overlap in the middle of the fragment

#### Scaffolding: paired-end sequencing

Say we have a collection of pairs and we assemble them as usual Assembly yields two contigs:



...and we discover that some of the mates at one edge of contig 1 are paired with mates in contig 2

Call these spanning pairs

#### Scaffolding: paired-end sequencing



What does this tell us?

Contig 1 is close to contig 2 in the genome

In fact, we can estimate distance between contigs using what we

know about fragment length distribution

The more spanning pairs we have, the better our estimate



#### Scaffolding: paired-end sequencing



What does the picture look like if contigs 1 and 2 are close, but we assembled contig 2 "backwards" (i.e. reverse complemented)



Pairs also tell us about contigs' relative orientation

#### Scaffolding

Scaffolding output: collection of *scaffolds*, where a scaffold is a collection of contigs related to each other with high confidence using pairs



#### **SPAdes**

Key tricks used by SPAdes assembler:

- Built-in error correction
- Generate dBGs across a range of k-mer sizes
- Use pair-end information to construct pre "scaffolded" graphs (instead of just post-processing)

# Profiling many microbes at once





#### Read-based analyses



10.1038/s41576-019-0108-4

#### Read-based analyses



10.1038/s41576-019-0108-4

But - lose wider context, can't resolve alleles, can't find new things!







Wildly varied coverage! How do we resolve repeats, closely related etc?

#### Aside: compacted de Bruijn graphs





Wildly varied coverage! How do we resolve repeats, closely related etc?



















Coverage and lots of other tricks and heuristics!







#### **Contig-based Analyses**



#### Contig-based Analyses



**But** - which genes came from which genome?







GC: 55% Coverage 5x

GC: 55%

Coverage 5x

GC: 57% Coverage: 30x

GC: 45%

Coverage: 30x

GC: 45%

Coverage: 30x

GC: 55% Coverage 5x

GC: 55% Coverage 5x GC: 57% Coverage: 30x

GC: 45%

Coverage: 30x

GC: 45%

Coverage: 30x

GC: 55%
Coverage 5x
GC: 55%
Coverage 5x

GC: 57%

Coverage: 30x

GC: 45%

Coverage: 30x

GC: 45%

Coverage: 30x

GC: 55% Coverage 5x GC: 55% Coverage 5x

GC: 57%

Coverage: 30x

GC: 45%

Coverage: 30x

GC: 45%

Coverage: 30x

Metabat and many other MAG binning tools cluster contigs using **composition** and **coverage** data

### Lots of context but terrible sensitivity



#### Overview

- de Bruijn Graphs are key to modern assembly methods (scales in minimum of depth or genome size)
- Error correction is vital to effective dBG methods (remove low abundance k-mers)
- Scaffolding/paired-end data important for usable short-read assemblies.

- Read-based metagenomics maximise sensitivity but lack precision and context
- Coverage data is key to assembly but metagenomic assembly is hard and fragmented
- Coverage and composition can be used to group contigs into MAGs
- Lots of data but low sensitivity