Lecture 11: de Bruijn
Graphs and Metagenomics

Bioinformatics Algorithms CSC4181/6802

Most slides used are from Ben Langmead’s Teaching
Materials (www.langmead-lab.org/teaching-materials)

De Bruijn graph

genome: AAABBBBA
3-mers: AAA, AAB, ABB, BBB, BBB, BBA

AN NN

L/R2-mers: AA,AA AA,AB AB,BB BB,BB BB,BB BB,BA

AB

. One edge per k-mer
(CYAA BA o
One node per distinct k-1-mer
BB

De Bruijn graph

AB

(CYAA ‘BA
BB

Walk crossing each edge exactly once gives a reconstruction
of the genome

De Bruijn graph

1 , JAB
CYAA 3 \BA
BBY6
5
AAABBBBA

Walk crossing each edge exactly once gives a reconstruction
of the genome. This is an Eulerian walk.

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and
multiset of directed edges, E

Otherwise, like a directed graph

Node's indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph

O
C d
V=1{a b ¢ d}
E={(a, b),(a,b)(a,b),(ac),lcDb)}

———-Repeated —

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node
Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

A directed, connected graph is Eulerian if AB

and only if it has at most 2 semi-balanced |

nodes and all other nodes are balanced e AA 1 ‘BA
Jones and Pevzner section 8.8 BB

U

De Bruijn graph

Back to de Bruijn graph

AS AAA, AAB, ABB, BBB, BBA

CYan /@ 7 /1 TN NN

v AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
BB L R L R L R L R L R

d

Is it Eulerian? Yes

Argument 1: AA—- AA—- AB - BB - BB — BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

De Bruijn graph

Full illustrative de Bruijn graph and Eulerian walk
implementation:

http://bit.ly/CG_DeBruijn

Example where Eulerian walk gives correct answer for

small k whereas Greedy-SCS could spuriously collapse
repeat:

>>> G = DeBruijnGraph(["a_long long long time"], 5)
>>> print G.eulerianWalkOrCycle()

['a_lo', ' lon', 'long', 'ong ', 'ng 1', 'g lo',

' lon', 'long’', 'ong ', 'ng 1', 'g lo', ' lon',
‘long', 'ong ', 'ng t', 'g ti', ' tim', 'time']

http://bit.ly/CG_DeBruijn

De Bruijn graph

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

De Bruijn graph

Problem 1: Repeats still cause misassembles
/A-AB-BE-EF-FA-AB-BC-CD-DA-AB - BY

/A-AB-BC-CD-DA-AB-BE—-EF-FA-AB-BY

Problem 2:

We've been building DBGs assuming “perfect”
sequencing: each k-mer reported exactly once,
no mistakes. Real datasets aren't like that.

Third law of assembly

Repeats make assembly difficult; whether we can

assem
and re

ole without mistakes depends on length of reads

netitive patterns in genome

Collapsing: a_long long long time

!

a_long long time

Shuffling:

.

De Bruijn graph

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

Graph fora _long long long time, k=5:

De Bruijn graph

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

Graphfora long long long time, k=5 but omitting ong t:

De Bruijn graph

Coverage differences make graph non-Eulerian

Graph for a_long long long time,
k =5, with extra copy of ong_t:

4 semi-balanced nodes

De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph for a_long long long time, k=15 but with
error that turns one copy of long_into 1xng_

De Bruijn graph

Casting assembly as Eulerian walk is appealing, but not practical
Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

! |
[Overlap4 [Error correction j
[La:/out 4 [De Bruij+n graph j
v ¥

[Consensuﬁ [Refine j
|

l v \/
[Scaffolding j

De Bruijn graph

Before: one
edge per k-mer

llr

T/

S
A \‘
")

After: one weighted @
edge per distinct k-mer |

Error correction

When data is error-free, # nodes, edges in De Bruijn graph is
O(min(G, N))

7 What about data with
sequencing errors?

k=30

I I I I I
10 20 30 40 50

De Bruijn graph edges
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Average Lambda phage coverage

Error correction

Correcting errors up-front prevents De Bruijn graph from growing
far beyond O(G) plateau

How to correct?
Analogy: how to spell check a language you've never seen before?

Errors tend to turn frequent words (k-mers) to infrequent ones.
Corrections should do the reverse.

Error correction

Left: Take example, mutate
a k-mer character randomly
"~ with probability 1%

Right: 6 errors yield 10 new
nodes, 6 new weighted (oot
edges, all with weight 1

Error correction

k-mers with errors usually occur fewer times than error-free k-mers

o
o
O — ~ —
= occuronce —— 0.1% error
J o
@) o _|
(&) o
- (0 0]
®
<
c 3
= o
= ©
N
)
o
E 9 -
VR
O
._g o
n S
5 N
=
o
/ | | | | |

32 k-mers 5 10 15 20 25

OCCUr once
k-mer count

Assembly alternatives

! |

[Overlapﬁ [Error correctlor(
v

[Layout 4 [De Bruun grapl{
v

[Reﬁne

y v
[Scaffolding j

[Consens
|

Error correction should
remove most tips &islands;
rest can be removed here,
leveraging graph structure

, ‘ = N gL

A f '
P AN 1)
TCA .

‘!"_' B 7 GATATTC
S 3 3. 9%

7 A
N N
N i S
MRS "“‘ii(‘
O 4L NN /' i
\ SR A W)))

CCCCC

Maternal 'ﬁgik
GTAGTCTCGGCATATGCGCCG \ﬁm»
Ty k=

GTAGTCTCGGTATATGCGCCG o

Paternal

GGGGG

Assembly alternatives

! |

[Overlapﬁ [Error correctior{
v v

[Layout 4 [De Bruijn grapl{
v ¥

[Consensuﬁ [Refine {

Remove remaining
¢ ¢ Ine 1 /g 1//
Scaffoldin islands" “tips” and
calrolding “bubbles” so that contigs
are more obvious

Impact of k-mer size

- Salmonella genome
assembly of 100bp
lllumina reads

- 51-mer = 4618 nodes and
6070 edges

https://github.com/rrwick/Bandage/wiki/Effect-of-k
mer-size

Impact of k-mer size

- Salmonella genome
assembly of 100bp
lllumina reads

- 61-mer = 1357 nodes and
1768 edges

https://github.com/rrwick/Bandage/wiki/Effect-of-k
mer-size

Impact of k-mer size

- Salmonella genome
assembly of 100bp
lllumina reads

- 71-mer = 611 nodes and
/65 edges

https://github.com/rrwick/Bandage/wiki/Effect-of-k
mer-size

Impact of k-mer size

- Salmonella genome \ Jg
assembly of 100bp
lllumina reads X-(C / , 2
N‘. 0.:;\..‘! \

1 ‘..% Seees
- 81-mer = 490 nodes and /;"1 ‘ Pw(

512 edges
N !/ L
---'"'—b .,

https://github.com/rrwick/Bandage/wiki/Effect-of-k Sl T B8 bR RN I
mer-size

Impact of k-mer size

- Salmonella genome 5.
assembly of 100bp Sy PR Ul | Sy B SR T v v
lllumina reads N S S e

- 91-mer = 2386 nodes and s i g gy v v B Rl g omragl gP co g ol e R s S

T AN O e S, R R P 4 S e T AT AR R B T R R R R B " W W R R R W " m wm
Smmes TR s SRy T e R e RS T YT G B B RS B R R W R R R W R R W " R W W R s e
il s o S e s s e A 2 BT AR K e i s e il e S M o s o
304ed es N = R e B T N T Sne
S R B T S G B T R e T TR S R e S e e W O R B R " " R s R R r s s e
T s e e e e e e e e S R G e T S e R S R R R R R R ER O R R W s m R s m s
e e R g e B S e e ST YT e e g B e e R R e R R R " R O W R W s m R s R m s e
- e e e e e e e e R e R S T e e e e R B R W R R e e e ER W s MR r e sy e
B M s ol g s e e O i I e R M D Wy 1 At Nl
g oo i g iy v S syt e s e e T i) T g
R e T A N e RSy e B e o e
B e N D o o
R L T T e e e Sl BT e A
S R o o e SR s NS 24
e N L e e L et hoReeE e R R
e e e R T R SRS IR AR
e ke S b= A el il e - o Rk ot ol o I iRt s IR
e s s e R e e e AW LA S RO B R e
e N S R S S s TN TR s e B
N N L O e N R
e = N N e s s P
e I s ol S B oy ol Bl W B T Bt el g e o 0 G R
R R s v N e e ges U S
I L A BRIy e Rl S Pl e SR e ms o s veguse B
R N e s T o R s S e NS e
R e T T T R R RS B
A e e e e e R SN PR e S BT
el o s A e e T B e B e S0 e S g Sl Xl S Bl T B R B Rt
S S S S i plm e B S e M S B B NS e e
AR o -4t o ol el o B e 4 Aol B B AN Ml .5 R A
TS R Sesermigmy R RN LT Srek e PO passmaes SO S Rt pun

https://github.com/rrwick/Bandage/wiki/Effect-of-k P R I I I R

mer-size s _. ST G B s s TR R S8 e R e e S e e Ry

......

Impact of k-mer size

\hf o
;\..t.,.."“.uuuu-mm““'\ S S (R ' .' —] l - | . [e L

- Salmonella genome '
g Vy’.{{:;?'-."(\?"}:?‘ﬂ_(_,._\()"_____l__l__,l_l._l,l.‘_...-...

~ n s

assembly of 100bp e P Sl] Sy s S B
lllumina reads AR Ay & — oo i i i

Solution: Use a range of k-mer sizes and reconcile the results
- SPAdes Assembler

https://github.com/rrwick/Bandage/wiki/Effect-of-k - m e om ettt ammeteaceanea e

mer-size R I A A DT RS T W T VG e S TN

Assembly paradigms

1: Overlap-Layout- 2: de Bruijn graph (DBG)
Consensus (OLC) assembly assembly
! |
[Overlap j [Error correction j
2 v
[Layout j [de Bruijn graph j
v v
[Consensus] [Refine j
|

| | Scaffolding | |

Scaffolding

Both OLC and DBG are concerned with constructing the longest,
most accurate contigs possible

Contig is a stretch of unambiguously assembled sequence

Scaffolding orders and orients contigs with respect to each other

For this we can use data from various sources, especially paired ends

Scaffolding: paired-end sequencing

We discussed sequencing by synthesis

Process we discussed produces one contiguous read sequence

¢ \/ !/ A\
\/ g 2/ ég § U/ § .1.
)C
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Scaffolding: paired-end sequencing

Alternative protocol produces a pair of reads taken from either end
of a longer fragment

Paired reads are also called mates to distinguish them from the
unpaired reads we've been discussing

Fragment
GCATCATTGCCAATATATGGCTCTAGCATAAAACC
GCATCATTG GCATAAAACC
Mate 1 Mate 2

Depending on lengths, mates might overlap in the middle of the
fragment

Scaffolding: paired-end sequencing

Say we have a collection of pairs and we assemble them as usual

Assembly yields two contigs:

Spanning pairs
Contig 1 Contig 2

..and we discover that some of the mates at one edge of contig 1 are
paired with mates in contig 2

Call these spanning pairs

Scaffolding: paired-end sequencing

Contig 1 Contig 2

What does this tell us?

Contig 1 is close to contig 2 in the genome

In fact, we can estimate distance between contigs using what we
know about fragment length distribution

Fragment Size Distribution
«10* 1156626 Paired-end Fragments Ma pped to Chromosome 1

The more spanning pairs we
have, the better our estimate

m o ~ (=] w0 o
T T T T T

Scaffolding: paired-end sequencing

-

e -7 e rr—
R ? —
. . Red mates in opposite
Contig 1 Contig 2 PP

orientation from blue

What does the picture look like if contigs 1 and 2 are close, but we
assembled contig 2 “backwards” (i.e. reverse complemented)

— I
Contig 1 Contig 2 (flipped)

Pairs also tell us about contigs’ relative orientation

Scaffolding

Scaffolding output: collection of scaffolds, where a scaffold is a collection
of contigs related to each other with high confidence using pairs

N\

M M w \v Image credit: Mike Schatz

SPAdes

Key tricks used by SPAdes assembler:

- Built-in error correction

- Generate dBGs across a range of k-mer sizes

- Use pair-end information to construct pre “scaffolded” graphs (instead of just
post-processing)

Profiling many microbes at once

Metagenomics

— ——
Genomes — = .
_

Metagenomics

I ————————— |
Genomes — R
———m————————

lSequencing

REads = e eSS =TS s ST -

Read-based analyses

Reference alleles =——— EEE Clean reads

i Q LT-J BWT/BLAST/HMM/K-mers

Reference
database

Coverage estimation and variant detection

10.1038/s41576-019-0108-4

Read-based analyses

Clean reads

i g %—) BWT/BLAST/HMM/K-mers

Reference
database

Reference alleles

Coverage estimation and variant detection

10.1038/s41576-019-0108-4

But - lose wider context, can’t resolve alleles, can’t find new things!

Metagenomics

I ————————— |
Genomes — R
———m————————

lSequencing

REads = e eSS =TS s ST -

Metagenomics

— |
GenOmeS — =]
_

lSequencing

Reads LN N e o Tyl Pl

Assembly Graph A\.éz\f'%:ﬁg'fié

Metagenomics

e ——————
Genomes - @ e
——

lSequencing
Reads

Assembly Graph ﬁ ‘Pz\t'.a*‘ : 0—:/\.‘| {E
Wildly varied coverage!
How do we resolve repeats, closely related etc?

TGC

GCG

Aside: compacted de Bruijn graphs

GCA

CGA

(GAT)

ATT

CAG

AGT

GTT

CAC

TTA

CTT

CAC

TTA

CTT

Metagenomic Assembly

GenOmeS — =]
_

lSequencing

REads = ET e e =T S -

Assembly Graph ﬁ ‘Pz\t'.a*‘ : 0—:/\.‘| {E
Wildly varied coverage!
How do we resolve repeats, closely related etc?

Metagenomic Assembly

“o

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Metagenomic Assembly

Ox

o

Ox

—— 0 ——
/— T —
—

Metagenomic Assembly

Coverage and lots of other tricks and heuristics!

—— 0 ——
/— T —
—

Metagenomics

— |
GenOmeS — =]
_

lSequencing

Reads LN N e o Tyl Pl

Assembly Graph A\.éz\f'%:ﬁg'fié

Metagenomics

s ——————
e ——————
Genomes - @ e
——
e |
e ——————————————— S

lSequencing

Reads

Assembly Graph

Contigs

Contig-based Analyses

Clean reads

De novo assembly

——

Assembled contigs

Gene finding

BLAST/HMM/K-mer .
and annotation

I|

Referenc database
(CARD, Resfinder or Resfams)

|

Contig-based Analyses

Clean reads

De novo assembly

——

Assembled contigs

Reference ata base
(CARD, Resfinder or Resfams)

Gene finding

BLAST/HMM/K-mer]
and annotation

H

|

But - which genes came from which genome?

Metagenomics

s ——————
e ——————
Genomes - @ e
——
e |
e ——————————————— S

lSequencing

Reads

Assembly Graph

Contigs

Metagenomics

— . ———————————————————————
]
Genomes ————————
. —
|
e ————————— e—

lSequencing

Reads

Assembly Graph

Assembly (2)

Contigs

Assembled Genomes .

Metagenome-

Metagenome Assembled Genome (MAG) Binning

Metagenome Assembled Genome (MAG) Binning

GC: 55%
Coverage 5x
O — | S |

Metagenome Assembled Genome (MAG) Binning

GC: 57%

GC: 55% Coverage: 30x
Coverage 5x GC: 45%
— Coverage: 30x
GC: 55% GC: 45%
e DX Coverage: 30x

Metagenome Assembled Genome (MAG) Binning

GC: 57%

Coverage: 30x
GC: 55% — GC: 45%
Coverage 5x Coverage: 30x
—
GC: 55% GC: 45%
Coverage 5x Coverage: 30x

Metagenome Assembled Genome (MAG) Binning

1 GC: 55%

1 Coverage 5x
Y s—
1 GC: 55%
:Coverage 5X
B

GGC: 57%
Coverage: 30x
——

' GC: 45%

: Coverage: 30x
|

1GC: 45%

1 Coverage: 30x

I--

Metagenome Assembled Genome (MAG) Binning

1 GC: 55%

1 Coverage 5x
Y s—
1 GC: 55%
:Coverage 5X

GGC: 57%
Coverage: 30x
——

' GC: 45%

: Coverage: 30x
|

1GC: 45%

1 Coverage: 30x

I--

Metabat and many other MAG binning tools cluster contigs using composition

and coverage data

Lots of context but terrible sensitivity

-
o
o

~
&)}
1

N
(&)

Proportion of Reference AMR genes
(&)
o (@)

AssemblyTool: idba_ud

AssemblyTool: megahit

AssemblyTool: metaspades

- Binned

. Correctly Binned

concoct dastool max‘bin2metabat2

concoct dastool maxbin2metabat?
Binner

concoct dastool maxbin2metabat?2

Overview

- de Bruijn Graphs are key to modern assembly methods (scales in minimum of
depth or genome size)

- Error correction is vital to effective dBG methods (remove low abundance
k-mers)

- Scaffolding/paired-end data important for usable short-read assembilies.

- Read-based metagenomics maximise sensitivity but lack precision and
context

- Coverage data is key to assembly but metagenomic assembly is hard and
fragmented

- Coverage and composition can be used to group contigs into MAGs

- Lots of data but low sensitivity

